Hematite Thin Films with Various Nanoscopic Morphologies Through Control of Self-Assembly Structures

نویسندگان

  • Jingling Liu
  • Yong-Tae Kim
  • Young-Uk Kwon
چکیده

Hematite (α-Fe2O3) thin films with various nanostructures were synthesized through self-assembly between iron oxide hydroxide particles, generated by hydrolysis and condensation of Fe(NO3)3 · 6H2O, and a Pluronic triblock copolymer (F127, (EO)106(PO)70(EO)106, EO = ethylene oxide, PO = propylene oxide), followed by calcination. The self-assembly structure can be tuned by introducing water in a controlled manner through the control of the humidity level in the surrounding of the as-cast films during aging stage. For the given Fe(NO3)3 · 6H2O:F127 ratio, there appear to be three different thermodynamically stable self-assembly structures depending on the water content in the film material, which correspond to mesoporous, spherical micellar, and rod-like micellar structures after removal of F127. Coupled with the thermodynamic driving forces, the kinetics of the irreversible reactions of coalescence of iron oxide hydroxide particles into larger ones induce diverse nanostructures of the resultant films. The length scale of so-obtained nanostructures ranges from 6 nm to a few hundred nanometers. In addition to water content, the effects of other experimental parameters such as aging temperature, spin rate during spin coating, type of substrate, and type of iron reagent were investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-high capacitance hematite thin films with controlled nanoscopic morphologies.

We synthesized α-Fe₂O₃ (hematite) thin films with two different nanoscopic morphologies through self-assembly between a Fe-precursor and a Pluronic tri-block copolymer (F127) followed by aging and calcination. Relative humidity (RH) during the aging step of the spin-coated films was found to be critical in determining the morphologies. A network structure of nanowires ∼6 nm in diameter formed w...

متن کامل

A new strategy to fabricate composite thin films with tunable micro- and nanostructures via self-assembly of block copolymers.

A new and facile strategy to fabricate composite thin films with tunable morphologies via self-assembly of block copolymer molecules at the air/liquid interface is first reported. The morphologies (parallel nanowires and foams) of these freestanding thin films can be tuned by varying the molecular structure or other experimental conditions.

متن کامل

Perpendicular Structure Formation of Block Copolymer Thin Films during Thermal Solvent Vapor Annealing: Solvent and Thickness Effects

Solvent vapor annealing of block copolymer (BCP) thin films can produce a range of interesting morphologies, especially when the perpendicular orientation of micro-domains with respect to the substrate plays a role. This, for instance, allows BCP thin films to serve as useful templates for nanolithography and hybrid materials preparation. However, precise control of the arising morphologies is ...

متن کامل

Block Copolymer Lithography : Merging “ Bottom - Up ” with “ Top - Down ” Processes

As the size scale of device features becomes ever smaller, conventional lithographic processes become increasingly more difficult and expensive, especially at a minimum feature size of less than 45 nm. Consequently, to achieve higher-density circuits, storage devices, or displays, it is evident that alternative routes need to be developed to circumvent both cost and manufacturing issues. An ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015